CEOS AC-VC Whitepaper David Crisp, Jet Propulsion Laboratory, California Institute of Technology CEOS Chair Priority Workshop on GHG Monitoring European Commission Joint Research Centre, Ispra, Italy 18-19 June 2018 ### **AC-VC White Paper** ## **Chapters** Contributions from participants at the CEOS SIT and CEOS AC-VC meetings were incorporated into the White Paper structure: #### **Executive Summary** - 1. Introduction - 2. Using atmospheric GHG measurements to improve inventories - 3. Space-based GHG measurement capabilities and near term plans - 4. Lessons Learned from SCIAMACHY, GOSAT and OCO-2 - 5. Integrating GHG Satellites into Operational Constellations - 6. Towards an operational constellation measuring anthropogenic CO₂ emissions - 7. The Transition from Science to Operations - 8. Conclusions #### Past and Present GHG Satellites - SCIAMACHY (2002-2012) First sensor to measure O₂, CO₂, and CH₄ using reflected NIR/SWIR sunlight - Regional-scale maps of X_{CO2} and X_{CH4} over continents - GOSAT (2009 ...) First Japanese GHG satellite - FTS optimized for high spectral resolution over broad spectral range, yielding CO₂, CH₄, and chlorophyll fluorescence (SIF) - OCO-2 (2014 ...) First NASA satellite to measure O₂ and CO₂ with high sensitivity, resolution, and coverage - High resolution imaging grating spectrometer small (< 3 km²) footprint and rapid sampling (10⁶ samples/day) - TanSat (2016 ...) First Chinese GHG satellite - Imaging grating spectrometer for O₂ and CO₂ bands and cloud & aerosol Imager - o In-orbit checkout formally complete in August 2017 #### The Next Generation - Feng Yun 3D (2017) Chinese GHG satellite on an operational meteorological bus - o GAS FTS for O₂, CO₂, CH₄, CO, N₂O, H₂O - Sentinel 5p (2017) Copernicus pre-operational Satellite - TROPOMI measures O₂, CH₄ (1%), CO (10%), NO₂, SIF - Imaging at 7 km x 7 km resolution, daily global coverage - Gaofen 5 (2018) 2nd Chinese GHG Satellite - Spatial heterodyne spectrometer for O₂, CO₂, and CH₄ - GOSAT-2 (2018) Japanese 2nd generation satellite - o CO as well as CO₂, CH₄, with improved precision (0.125%), and active pointing to increase number of cloud free observation - OCO-3 (2019) NASA OCO-2 spare instrument, on ISS - First CO₂ sensor to fly in a low inclination, precessing orbit ## Future GHG Satellites (2) - CNES/UK MicroCarb (2021+) compact, high sensitivity - Imaging grating spectrometer for O₂ A, O₂ ¹Δ_g, and CO₂ - ~1/2 of the size, mass of OCO-2, with 4.5 km x 9 km footprints - CNES/DLR MERLIN (2021+) First CH₄ LIDAR (IPDA) - Precise (1-2%) X_{CH4} retrievals for studies of wetland emissions, inter-hemispheric gradients and continental scale annual CH₄ budgets - NASA GeoCarb (2022*) First GEO GHG satellite - Imaging spectrometer for X_{CO2}, X_{CH4}, X_{CO} and SIF - Stationed above ~85° W to view North/South America - Sentinel 5A,5B,5C (2022) Copernicus operational services for air quality and CH4 - Daily global maps of XCO and XCH4 at < 8 km x 8 km #### **GHG** Mission Timeline - A broad range of GHG missions will be flown over the next decade. - Most are "science" missions, designed to identify optimal methods for measuring CO₂ and CH₄, not "operational" missions designed to deliver policy relevant GHG products focused on anthropogenic emissions # GCOS CO₂ and CH₄ Requirements. The CO₂ and CH₄ measurement requirements in the 2011 update for the Global Climate Observing System (GCOS) Systematic Observation Requirements for Satellite-Based Data Products for Climate (GCOS, 2011) and GCOS 2016 Implementation Plan (GCOS, 2016) were adopted as targets for a future GHG constellation. | Variable / Parameter | Horizontal
Resolution | Vertical
Resolution | Temporal
Resolution | Accuracy | Stability/
Decade* | Stability/
Decade** | |-------------------------------------|--------------------------|------------------------|------------------------|----------|-----------------------|------------------------| | Tropospheric CO ₂ column | 5-10km | N/A | 4 h | 1 ppm | 0.2 ppm | 1.5 ppm | | Tropospheric CO ₂ | 5-10 km | 5 km | 4 h | 1 ppm | 0.2 ppm | 1.5 ppm | | Tropospheric CH ₄ column | 5-10 km | N/A | 4 h | 10 ppb | 2 ppb | 7 ppb | | Tropospheric CH ₄ | 5-10 km | 5 km | 4 h | 10 ppb | 2 ppb | 0.7 ppb | | Stratospheric CH ₄ | 100-200 km | 2 km | Daily | 5% | 0.30% | 0.30% | ^{*} from GCOS 2011 ^{**} from GCOS 2016 # Timely inputs to policy makers # A Candidate GHG Constellation Architecture The accuracy, precision, resolution, and coverage requirements could be achieved with a constellation that incorporates - A constellation of 3 (or more) satellites in LEO with - A broad (> 200) km swath with a mean footprint size < 4 km² - A single sounding random error near 0.5 ppm, and vanishing small regional scale bias (< 0.1 ppm) over > 80% of the sunlit hemisphere - One (or more) satellites carrying ancillary sensors (CO, NO₂, CO₂ and/or CH₄ Lidar) - A constellation with 3 (or more) GEO satellites - Monitor diurnally varying processes (e.g. rush hours, diurnal variations in the biosphere) - Stationed over Europe/Africa, North/South America, and East Asia - This constellation could be augmented with one or more HEO satellites to monitor carbon cycle changes in the high arctic # Future LEO GHG Constellations in the Planning Stages - Copernicus CO₂ Sentinel (2025+) - 3 or 4 LEO satellites in an operational GHG constellation - Primary instruments measure O₂ (0.76 μm A-band), CO₂ (1.61 and 2.06 μm), CH4 (1.67 μm) and NO₂ (0.450 μm) at a spatial resolution of 2 km x 2 km along a 200-300 km swath - A dedicated cloud/aerosol instrument is also under consideration #### TanSat-2 Constellation - 6 satellites, with 3 flying in morning sun-synchronous orbits and 3 flying in afternoon sun-synchronous orbits - primary GHG instrument on each satellite with measure CO₂ (1.61 and 2.06 μm), CH₄ and CO (2.3 μm) as well as the O₂ A-band (0.76 μm) across a 100-km crosstrack swath TanSat Constellation ## Merging Science and Operations - Because of the unprecedented requirements for precision and accuracy, the space based elements of the an operational GHG constellation architecture must be accompanied by - Rigorous pre-launch and on-orbit measurement calibration and product validation methods that evolve to meet emerging needs - Continuous refinements in remote sensing retrieval and flux inversion modeling methods that improve the products over time - CEOS could play an essential role in coordinating these activities among its partner agencies - Any operational architecture will also have to address - orbit and mission coordination, data distribution, data exchange, and data format requirements - Training and capacity building and public outreach will be needed to fully exploit the value of the space based GHG measurements - CEOS should collaborate with CGMS and other operational organizations to foster the development of these capabilities